Classifying Iris

By for September 13, 2017

Report Abuse
The purpose of this example is to demonstrate how to use a feature selection technique not available for Azure ML experiments.
# Classifying Iris ![cover](./images/cover.png) This is a companion sample project of the Iris tutorial that you can find from the main GitHub documentation site. Using the timeless [Iris flower dataset](https://en.wikipedia.org/wiki/Iris_flower_data_set), it walks you through the basics. Enjoy! ## Quick CLI references If you want to try quickly from the command line window launched from the _File_ menu: Kick-off many local runs to observe the metrics emitted by each run in a graph. ``` # Only needed if you don't have matplotlib installed $ pip install matplotlib # kick off many local runs sequentially $ python run.py ``` Run _iris_sklearn.py_ in local environment. ``` $ az ml experiment submit -c local iris_sklearn.py ``` Run _iris_sklearn.py_ in a local Docker container. ``` $ az ml experiment submit -c docker-python iris_sklearn.py ``` Run _iris_pyspark.py_ in a local Docker container. ``` $ az ml experiment submit -c docker-spark iris_pyspark.py ``` Create _myvm.compute_ file to point to a remote VM ``` $ az ml computetarget attach --name <myvm> --address <ip address or FQDN> --username <username> --password <pwd> --type remotedocker ``` Run _iris_pyspark.py_ in a Docker container (with Spark) in a remote VM: ``` $ az ml experiment submit -c myvm iris_pyspark.py ``` Create _myhdi.compute_ to point to an HDI cluster ``` $ az ml computetarget attach --name <myhdi> --address <ip address or FQDN of the head node> --username <username> --password <pwd> --cluster ``` Run it in a remote HDInsight cluster: ``` $ az ml experiment submit -c myhdi iris_pyspark.py ```