Campaign Optimization with Azure HDInsight Spark Clusters

By for February 1, 2017

Report Abuse
This solution demonstrates how to build and deploy a machine learning model with Microsoft R Server on Azure HDInsight Spark clusters to recommend actions to maximize the purchase rate of leads targeted by a campaign. This solution enables efficient handling of big data on Spark with Microsoft R Server.
> **Note:** You can read more about this solution and deployment guides in the [Campaign Optimization solution](https://github.com/Microsoft/r-server-campaign-optimization) published on GitHub. > This solution will create an HDInisght Spark cluster with Microsoft R Server. This cluster will contain 2 head nodes, 2 worker nodes, and 1 edge node with a total of 32 cores. The approximate cost for this HDInsight Spark cluster is 3.11USD/hour. Billing starts once a cluster is created and stops when the cluster is deleted. Billing is pro-rated per minute, so you should always **delete your cluster** when it is no longer in use. Use the Deployments page to delete the entire solution once you are done. ## Overview When a business launches a marketing campaign to interest customers in new or existing product(s), they often use a set of business rules to select leads for their campaign to target. Machine learning can be used to help increase the response rate from these leads. This solution demonstrates how to use a model to predict actions that are expected to maximize the purchase rate of leads targeted by the campaign. These predictions serve as the basis for recommendations to be used by a renewed campaign on how to contact (for example, e-mail, SMS, or cold call) and when to contact (day of week and time of day) the targeted leads. The solution presented here uses simulated data from the insurance industry to model responses of the leads to the campaign. The model predictors include demographic details of the leads, historical campaign performance, and product-specific details. The model predicts the probability that each lead in the database makes a purchase from a channel, on each day of the week at various times of day. Recommendations on which channel, day of week and time of day to use when targeting users are based then on the channel and timing combination that the model predicts will have the highest probability a purchase being made. Read more about this solution, including step-by-step instructions on how to deploy it, at the [Campaign Optimization Website](https://microsoft.github.io/r-server-campaign-optimization/). ## Disclaimer ©2017 Microsoft Corporation. All rights reserved. This information is provided "as-is" and may change without notice. Microsoft makes no warranties, express or implied, with respect to the information provided here. Third party data was used to generate the Solution. You are responsible for respecting the rights of others, including procuring and complying with relevant licenses in order to create similar datasets. ![ ](https://quickstart.azure.ai/track?solutionid=campaignhdi)